Finding a low-rank basis in a matrix subspace
نویسندگان
چکیده
منابع مشابه
Finding a low-rank basis in a matrix subspace
For a given matrix subspace, how can we find a basis that consists of low-rank matrices? This is a generalization of the sparse vector problem. It turns out that when the subspace is spanned by rank-1 matrices, the matrices can be obtained by the tensor CP decomposition. For the higher rank case, the situation is not as straightforward. In this work we present an algorithm based on a greedy pro...
متن کاملOnline Low-Rank Subspace Clustering by Basis Dictionary Pursuit
Low-Rank Representation (LRR) has been a significant method for segmenting data that are generated from a union of subspaces. It is also known that solving LRR is challenging in terms of time complexity and memory footprint, in that the size of the nuclear norm regularized matrix is n-by-n (where n is the number of samples). In this paper, we thereby develop a novel online implementation of LRR...
متن کاملSubspace based low rank & joint sparse matrix recovery
We consider the recovery of a low rank and jointly sparse matrix from under sampled measurements of its columns. This problem is highly relevant in the recovery of dynamic MRI data with high spatio-temporal resolution, where each column of the matrix corresponds to a frame in the image time series; the matrix is highly low-rank since the frames are highly correlated. Similarly the non-zero loca...
متن کاملSubspace-Orbit Randomized Decomposition for Low-rank Matrix Approximation
An efficient, accurate and reliable approximation of a matrix by one of lower rank is a fundamental task in numerical linear algebra and signal processing applications. In this paper, we introduce a new matrix decomposition approach termed Subspace-Orbit Randomized singular value decomposition (SORSVD), which makes use of random sampling techniques to give an approximation to a low-rank matrix....
متن کاملLow rank subspace clustering (LRSC)
We consider the problem of fitting a union of subspaces to a collection of data points drawn from one or more subspaces and corrupted by noise and/or gross errors. We pose this problem as a non-convex optimization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise and/or gross errors. By self-expressive w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2016
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-016-1042-2